LONG COLLECTOR MIRROR LIFETIME DEMONSTRATION AROUND 100W AVERAGE LPP-EUV SOURCE FOR SEMICONDUCTOR HIGH VOLUME MANUFACTURING

Dr. Hakaru Mizoguchi
Executive Vice President, CTO, Gigaphoton Inc.

Hiroaki Nakarai, Tamotsu Abe, Krzysztof M Nowak, Yasufumi Kawasuji, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Georg Soumagne, Tsuyoshi Yamada, Taku Yamazaki and Takashi Saitou

Gigaphoton Inc. Hiratsuka facility: 3-25-1 Shinomiya Hiratsuka Kanagawa, 254-8567, JAPAN
Agenda

- Introduction

- HVM Ready System Performance
 - EUV Source System
 - Availability Status

- Key Component Technology update
 - Pre-pulse technology
 - Droplet generator
 - CO2 laser
 - Collector Mirror Life Extension

- Summary
INTRODUCTION
2017 Business Highlights

DUV Business
- We foresee 94-unit shipment as the projection for 2017
- Announced a new GT65A product with cutting-edge lithography light source technology and new eco-friendly solutions

EUV Business
- 0.4% per Giga-pulse of Collector mirror reflectance demonstrated
- Further scalability scenario toward 300/500W EUV power realized
- Achieved major milestone toward >80% availability on Pilot light source

FPD Business
- Selective Laser Annealing system with GT600K-Integrated Released into the China market in Oct 2017
- High availability > 99.7% through Lithography experience
- Advanced maintainability, No window cleaning required
- Minimum gas usage by Gas recycling system
HVM READY SYSTEM PERFORMANCE
Gigaphoton LPP Source Concept

1. High ionization rate and CE EUV tin (Sn) plasma generated by dual-wavelength shooting via CO₂ and pre-pulse solid-state lasers
2. Hybrid CO₂ laser system with short pulse high repetition rate oscillator and commercial cw-amplifiers
3. Tin debris mitigation with a superconductive magnetic field
4. Accurate shooting control with droplet and laser beam control
5. Highly efficient out-of-band light reduction with grating structured C1 mirror
Target System Specification

<table>
<thead>
<tr>
<th>Target Performance</th>
<th>Proto#1 Proof of Concept</th>
<th>Proto#2 Key Technology</th>
<th>Pilot#1 HVM Ready</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUV Power</td>
<td>25W</td>
<td>>100W</td>
<td>250W</td>
</tr>
<tr>
<td>CE</td>
<td>3%</td>
<td>> 4%</td>
<td>> 5%</td>
</tr>
<tr>
<td>Pulse Rate</td>
<td>100kHz</td>
<td>100kHz</td>
<td>100kHz</td>
</tr>
<tr>
<td>Output Angle</td>
<td>Horizontal</td>
<td>62° upper</td>
<td>62° upper</td>
</tr>
<tr>
<td>Availability</td>
<td>~1 week</td>
<td>~1 week</td>
<td>>80%</td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Droplet Generator</td>
<td>20 - 25μm</td>
<td>< 20μm</td>
<td>< 20μm</td>
</tr>
<tr>
<td>CO₂ Laser</td>
<td>5kW</td>
<td>20kW</td>
<td>27kW</td>
</tr>
<tr>
<td>Pre-pulse Laser</td>
<td>picosecond</td>
<td>picosecond</td>
<td>picosecond</td>
</tr>
<tr>
<td>Collector Mirror Lifetime</td>
<td>Used as development</td>
<td>10 days</td>
<td>> 3 months</td>
</tr>
<tr>
<td></td>
<td>platform</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
First HVM EUV Source

- 250W EUV source

<table>
<thead>
<tr>
<th>Specification</th>
<th>Target Specification</th>
<th>HVM Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>EUV Power</td>
<td>> 250W</td>
</tr>
<tr>
<td></td>
<td>CE</td>
<td>> 4.0 %</td>
</tr>
<tr>
<td></td>
<td>Pulse rate</td>
<td>100kHz</td>
</tr>
<tr>
<td></td>
<td>Availability</td>
<td>> 80 %</td>
</tr>
<tr>
<td>Technology</td>
<td>Droplet generator</td>
<td>< 20mm</td>
</tr>
<tr>
<td></td>
<td>Droplet size</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO2 laser</td>
<td>> 20kW</td>
</tr>
<tr>
<td></td>
<td>Power</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-pulse laser</td>
<td>Pulse duration psec</td>
</tr>
<tr>
<td></td>
<td>Debris mitigation</td>
<td>Magnet, Etching</td>
</tr>
</tbody>
</table>

EUV Exposure Tool
Pilot System EUV Chamber
System Performance: 125W Operation Data

<table>
<thead>
<tr>
<th>Performance</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average power at IF</td>
<td>125W</td>
</tr>
<tr>
<td>Dose error (3 sigma) *1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Die yield (<0.16%)*2</td>
<td>96.9%</td>
</tr>
<tr>
<td>Operation time</td>
<td>28h</td>
</tr>
<tr>
<td>Pulse Number</td>
<td>10BpLs</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>100%</td>
</tr>
<tr>
<td>In-band power</td>
<td>125W</td>
</tr>
<tr>
<td>Dose margin</td>
<td>30%</td>
</tr>
<tr>
<td>Collector lifetime *3</td>
<td>--</td>
</tr>
<tr>
<td>Repetition rate</td>
<td>100kHz</td>
</tr>
</tbody>
</table>

Note
- *1: Dose error is defined by 800 pulse (8 ms) moving window
- *2: Dose performance failure is mainly due to droplet combination failure
- *3: Dummy mirror was used for investigation.
4-8. System Performance: Pulse to Pulse Operation Data

EUV Energy

Dose error

800 pulse (8ms) moving window

CO2 Energy
Availability potential test

- 2 week availability potential test was done. Availability was 64% and idle time was 25%. Availability is potentially achievable at 89%.

System stop event table

<table>
<thead>
<tr>
<th>Day</th>
<th>Event</th>
<th>Repair time</th>
<th>Root cause</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Dose Error</td>
<td>1.25h</td>
<td>25% dose margin is not sufficient</td>
<td>Dose margin 25% -> 28% New shooting control will be applied at Jun.</td>
</tr>
<tr>
<td>3</td>
<td>Sensor Error</td>
<td>3h</td>
<td>Sensor reliability</td>
<td>New sensor will be applied (TBD).</td>
</tr>
<tr>
<td>5</td>
<td>Dose Error</td>
<td>-</td>
<td>Droplet combination failure</td>
<td>Countermeasures will be applied at Jul.</td>
</tr>
<tr>
<td>6</td>
<td>Dose Error</td>
<td>1.25h</td>
<td>Shooting control algorithm</td>
<td>Same as Day 2 countermeasure</td>
</tr>
<tr>
<td>8</td>
<td>Dose Error</td>
<td>0.25h</td>
<td>28% dose margin is not sufficient</td>
<td>Dose margin 28->35% Same as Day 2 countermeasure.</td>
</tr>
<tr>
<td>10</td>
<td>Dose Error</td>
<td>3.75h</td>
<td>Droplet position instability due to particle issues.</td>
<td>Countermeasures are going on.</td>
</tr>
<tr>
<td>13</td>
<td>Dose Error</td>
<td>4.25h</td>
<td>Mirror damage in BTS(beam transfer system) for new mirror evaluation.</td>
<td>Replacement to conventional mirror</td>
</tr>
<tr>
<td>14</td>
<td>Dose Error</td>
<td>11.25h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dose error: System stopped at > 2% Dose error (3 sigma) /10kpl's slit and error was not recovered by automatic function

Idle time: Time for waiting operator.

24 hour x 7 days definition
Unmanned operation between 9pm thru 8am

MTTR: 2.8h
Availability Trends

- Availability improvement has been made and the challenges are classified by modules.

- Idle time: Time for waiting operator or service.

- Downtime breakdown:
 - Beam steering system: 0%
 - Others: 16%
 - Droplet generator: 22%
 - CO2 laser: 29%
 - Vessel: 28%
 - Pre-pulse laser: 5%

- Time for gas replacement in CO2 pre-amplifier.

- Availability breakdown:
 - Time ON: 53%
 - Idle time: 29%
 - Scheduled down: 13%
 - Unscheduled down: 5%

- Graph showing availability trends from 2015 to 2018:
 - 2015: 15%
 - 2016: 17%
 - 2017: 53%
 - 2018: 44%
KEY COMPONENT TECHNOLOGY UPDATE
Gigaphoton EUV Technology

1. Debris Mitigation by Magnet

2. Droplet Generator

3. Pre-pulse laser

4. CO2 laser system

- Collector Mirror
- pre-pulse laser
- CO2 laser
- Chamber
- CO2 Laser Amplifier
- CO2 Laser Pre-amplifier
- CO2 Laser Oscillator
- Heat Exchanger
Gigaphoton EUV Technology for Lower CoO

1. Droplet Generator
 - CO2 laser
 - Chamber

2. Pre-pulse laser
 - CO2 Laser Amplifier

3. CO2 laser system
 - CO2 Laser Pre-amplifier
 - CO2 Laser Oscillator
 - Heat Exchanger

4. Debris Mitigation by Magnet

EUVL –WS 2018
Gigaphoton EUV Technology for Lower CoO

1. Droplet Generator
 - 100kHz (2x) rep rate
 - 90m/sec DL speed
 - 900um droplet distance
 - 20um small droplet
 => less contamination
 => longer DLG life

2. Pre-pulse laser
3. CO2 laser system
4. Debris Mitigation by Magnet

- CO2 Laser Amplifier
- CO2 Laser Pre-amplifier
- CO2 Laser Oscillator
- Heat Exchanger

100kHz (2x) rep rate
90m/sec DL speed
900um droplet distance
20um small droplet
=> less contamination
=> longer DLG life

- Slide 18
- EUVL – WS 2018
- Copyright © Gigaphoton Inc.
1-1. Gigaphoton EUV Technology: Droplet Generator

- **Benefit:** Small sized high speed droplets
 - Less debris and 3x tin reservoir lifetime due to 1/3 volume against conventional droplets
 - High speed droplets to support up to 100kHz operation, doubling the today’s source

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>GPI</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Droplet speed</td>
<td>(60m/s)</td>
<td>90m/sec</td>
<td>Influence from plasma is ½ vs conventional technology because the distance of 2 droplet is 1.5x</td>
</tr>
<tr>
<td>Frequency</td>
<td>50kHz</td>
<td>100kHz</td>
<td>High frequency enables to reduce one plasma energy by half to reduce Sn contamination</td>
</tr>
<tr>
<td>Droplet size</td>
<td>30 micron</td>
<td>20 micron</td>
<td>1/3 in Sn volume. Less contamination on the corrector mirror</td>
</tr>
</tbody>
</table>
1-2. Droplet Generator

- Ar pressurized up to 400 atmosphere pressure
- High-pressure Sn tank
- Nozzle
- Heater
- Tank
- Piezo Actuator
- Droplet

Particle management

20um droplet generation technology

100kHz ejection technology

Diameter 20um position stability +/- 5um

- 20MPa–DLG 60m/s
- 40MPa–DLG 90m/s
- 90m/s

Freq. =100kHz
Freq. =100kHz
Freq. =50kHz

EUVL –WS 2018

Droplet Status

Copyright © Gigaphoton Inc.
Gigaphoton EUV Technology for Lower CoO

1. Droplet Generator

2. Pre-pulse laser
 - Pico sec 1um pre-pulse
 - Ideal dome mist
 - >5% EUV CE

3. CO2 laser system

4. Debris Mitigation by Magnet

- CO2 Laser Pre-amplifier
- CO2 Laser Oscillator
- Heat Exchanger

- Collector
- Mirror
- Chamber
- Pre-pulse laser
Benefit
- **Highest CE (Conversion Efficiency) at 5%** demonstrated
- Supports growing demand for **high power >500W**
- Run with less resources such as electricity/water/gas

Table

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>GPI</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse duration</td>
<td>(Nano sec)</td>
<td>Pico sec</td>
<td>High EUV CE >5%</td>
</tr>
<tr>
<td>WL of pre-pulse</td>
<td>10.6um</td>
<td>1um</td>
<td>Separate pre-pulse unit provide flexibility for the optimization for long term operation</td>
</tr>
<tr>
<td>Optical path</td>
<td>2 optical path</td>
<td>Coaxial</td>
<td>Pre-pulse beam with the same optical path as main CO2 beam. Shorter beam axis alignment time.</td>
</tr>
</tbody>
</table>

Graph
- CE at 37 deg: 5.5%
- PPL - CO₂ delay
2-2. Pre-pulse technology

- Advantage of pico-second pre-pulse over nano-second

Pre-pulse (nano-second)

‘Disk’ like target

Shadow graph

Pre-pulse (pico-second)

‘Dome’ like target

Ideal

Very short pulse duration with 1um wavelength laser

Same optical path between pre-pulse and main

X-ray CCD

400 um

400 um
Gigaphoton EUV Technology for Lower CoO

1. Droplet Generator
 - CO2 laser
 - Debris Mitigation by Magnet

2. Pre-pulse laser
 - CO2 Laser Amplifier
 - Heat Exchanger
 - CO2 Laser Pre-amplifier

3. CO2 laser system
 - Uniform beam profile
 - Auto beam adjustment
 - 30% less electricity
 - High CO2 CE
 - High availability

4. Debris Mitigation
 - Droplet Generator
 - Pre-pulse laser
 - CO2 laser system
 - CO2 Laser Ampifier

✓ 30% less electricity
✓ Uniform beam profile
=> High CO2 CE
=> less electricity usage
✓ Auto beam adjustment
=> High availability

EUVL – WS 2018

Copyright © Gigaphoton Inc.
3-1. Gigaphoton EUV Technology: CO₂ Lasers

Benefit

- **Excellent beam uniformity** enables efficient EUV creation
- **Short maintenance down time**
 - Separated optical binding module design
 - Auto beam adjustment
- **Efficient CO₂ Laser** and eco-friendly

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>GPI</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam profile uniformity</td>
<td>Not uniform</td>
<td>Uniform</td>
<td>Uniform beam profile leads higher CE.</td>
</tr>
<tr>
<td>Separate Optical Binding module</td>
<td>N/A</td>
<td>Yes</td>
<td>Minimize chamber replace time</td>
</tr>
<tr>
<td>Auto Beam adjustment</td>
<td>N/A</td>
<td>Yes</td>
<td>Keep uniform beam profile without interruption for adjustment</td>
</tr>
<tr>
<td>Power requirement</td>
<td>>1,200kVA</td>
<td>880kVA</td>
<td>30% less electricity</td>
</tr>
</tbody>
</table>

EUVL – WS 2018
3-2. CO₂ Lasers: Higher EUV CE with Uniform Beam Profile

- >5% CE was achieved due to the greatly improved CO₂ beam profile

Greatly improved evenness in beam profile allows for more uniform and efficient ionization of droplets – thus resulting in higher CE

Previous CO₂ beam profile was very uneven and hence less efficient by comparison
3-3. CO2 Lasers : Separate Optical Biding Module

- Optical Binding Module is isolated from the CO$_2$ Lase Chamber and Power Supply

- Chamber replacements without axis realignment
3-4. CO₂ Lasers : Auto Beam Adjustment

- Monitor modules and beam steering modules support easy maintenance.

Monitor module
- Beam profile camera
- Beam divergence camera
- Pulse energy sensor
- Pulse timing sensor (Oscillator only)

Beam steering module
- XY steering mirror
- Z beam expander

Easy & Stable beam axis adjustment

To source chamber
Beam transfer system

- CO₂ laser
- Pre-Pulse laser (PPL)

Monitor module
- Beam profile camera
- Beam divergence camera
- Pulse energy sensor
- Pulse timing sensor (Oscillator only)

Beam steering module
- XY steering mirror
- Z beam expander

Back reflection monitor
- Power meter
Gigaphoton EUV Technology for Lower CoO

1. Droplet Generator
2. Pre-pulse laser
3. CO2 laser system
4. Debris Mitigation by Magnet

- Magnetic field, 20μm small droplet, 98% Sn ionization lead less contamination
- 0.4%/G pulse @30W was achieved
- 125W mitigation test is ongoing

- CO2 Laser Amplifier
- CO2 Laser Pre-amplifier
- CO2 Laser Oscilator
- Heat Exchanger

Magnetic field, 20μm small droplet, 98% Sn ionization lead less contamination
0.4%/G pulse @30W was achieved
125W mitigation test is ongoing

- Pre-pulse laser
- CO2 laser system
- Chamber
- Collector
- Mirror
4-1. Gigaphoton EUV Technology : Debris Mitigation

Benefit:
- High uptime and low CoO by long collector mirror lifetime
- **Magnetic mitigation** to protect the collector mirror surface from tin
- Long lifetime to minimized downtime for collector swap

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>GPI</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic field mitigation technology</td>
<td>N/A</td>
<td>1/100 # of Tin atom</td>
<td>Reduces # of Sn ion which reaches collector mirror.</td>
</tr>
<tr>
<td>Smaller Sn droplet</td>
<td>30 micron dia.</td>
<td>20 micron dia. 1/3 in volume</td>
<td>Less unusable Sn for EUV emission to reduce contamination.</td>
</tr>
<tr>
<td>Hi ionization ratio of Sn 20um droplet</td>
<td>60%</td>
<td>98%</td>
<td>Less contamination on collector mirror and also less contamination inside chamber.</td>
</tr>
<tr>
<td>>125W Mitigation</td>
<td>Practical performance at customer site</td>
<td>GPI internal test is on going</td>
<td>0.4% / G pulse at 30w average power was confirmed. Mitigation test with more than 125W is ongoing.</td>
</tr>
</tbody>
</table>
4-2. Short-term: Etching and Dissociation Sn balance on the Mirror Surface

Chemical Equilibrium on the Mirror Surface

- Tin ionization & magnetic guiding
 - Tin is ionized effectively by double pulse irradiation
 - Tin ions are confined with magnetic field
 - Confined tin ions are guided and discharged from exhaust ports

- Protection & cleaning of collector with H₂ gas
 - High energy tin neutrals are decelerated by H₂ gas in order to prevent the sputtering of the coating of collector.
 - Deposited tin on the collector is etched by H radical gas.*
 - Gas flow and cooling systems for preventing decomposition of etched tin (SnH₄)

*H₂ molecules are dissociated to H radical by EUV-UV radiation from plasma.

SnH₄ → Sn + 4H

Photo Chemical Etching
Sn + 2H₂ + hv → SnH₄

Radical Etching
Sn + 4H* → SnH₄

Dissociation
SnH₄ → Sn + 2H₂

Dissociation Speed

\[k = A \cdot \exp\left(-\frac{E_a}{RT}\right) \]
4-3. Collector Mirror: Lifetime Status

- Power level of EUV: 95W in Burst, (= 1.9mJ x 50kHz), 33% duty cycle, 31W in average.
- Collector lifetime was improved to -0.4%/Bpls by magnetic debris mitigation technology optimization.

![Graph showing reflectivity over pulse number for different conditions: Proto#2 31W low heat load with condition A, Pilot#1 85W high heat load with condition B, and Proto#2 31W low heat load with condition C.]

Far field pattern in test condition B and C.

- Back flow to collector with Tin
- Tin sputtering

EUVL – WS 2018
4-4. Long-term: Capping Layer and Multi-Layer Durability

- **Cross-section of Cap layer after long-term testing**
 - Thickness changes at capping layer due to sputtering.
 - First Si layer become thicker and reflectance down around 30% due to oxidization.
4-5. Dummy Mirror Observation at 75W/125W av.

- Sputtering rate increases in high power operation.
- Tin deposition started after capping layer disappearance because Tin etching performance depend on capping layer.

75W, 1Bpls
Sputtering rate < 0.1nm/Bpls

125W, 1Bpls
Sputtering rate 8.4nm/Bpls

125W, 10Bpls
Capping disappearance and Tin deposition
4.6. Sputtering Effect Increase by Higher Operation Power

- Sputtering rate enhancement occurred by gas heating at higher output power.

<Mechanism>

- Higher power
- Gas heating
- Gas density decrease
- Gas stopping decrease

Preliminary Result

- Sputtering rate enhancement occurred by gas heating at higher output power.

EUV plasma cooling is key point of mirror lifetime extension at higher power operation.
4-7. Mitigation Test Achievement and Next step

- **Criteria**: 0.2%/Gpl at 1B pulses
- **Achievement**: Proof of concept coupon test with 75W succeeded. Ongoing with 125W, Flow improvement, New cap. Layer
- **Next step**: With real mirror, 125W degradation test for 0.2%/Gpl

<table>
<thead>
<tr>
<th>Run #</th>
<th>180314 PRT2</th>
<th>180404 PRT2</th>
<th>1807XX PRT2</th>
<th>1808XX PRT2</th>
<th>1812XX PRT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power [W]</td>
<td>38</td>
<td>75</td>
<td>125</td>
<td>125</td>
<td>250</td>
</tr>
<tr>
<td>Mirror Contamination test coupon yield @1Bpls</td>
<td>OK</td>
<td>OK</td>
<td>On going</td>
<td>Plan Real mirror</td>
<td>Plan Real mirror</td>
</tr>
<tr>
<td>Sn in Chamber [a.u.]</td>
<td>5.68E-11</td>
<td>1.11E-10</td>
<td>2.21E-10</td>
<td>2.21E-10</td>
<td>2.21E-10</td>
</tr>
<tr>
<td>Sn on Mirror [a.u.]</td>
<td>8.64E-12</td>
<td>1.68E-11</td>
<td>3.36E-11</td>
<td>3.36E-11</td>
<td>3.36E-11</td>
</tr>
<tr>
<td>Duty [%]</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Repetition [kHz]</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>IF EUV [mJ]</td>
<td>1.5</td>
<td>1.5</td>
<td>1.25</td>
<td>1.25</td>
<td>2.50</td>
</tr>
<tr>
<td>Flow optimization</td>
<td>yes</td>
<td>yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow improvement</td>
<td>-</td>
<td>-</td>
<td>1st Step</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>New Cap. layer</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Summary

- Pilot#1 is up running and its demonstrates HVM capability;
 - High conversion efficiency 5% is realized with Pre-pulse technology.
 - High speed (>90m/s) & small (20micron) droplet is realized.
 - High power CO2 laser technology is one of the important technology for HVM.
 - Output power 250W in-burst power @50% duty (125W ave.) several min.
 - Output power 113W in-burst power @75% duty (85W ave.) 143hrs.
 - Pilot#1 system achieved potential of 89% Availability (2weeks average).

- **Recent achievement for most critical challenges mirror life**
 - -0.2%/Gpls with 125W ave. was demonstrated at short term dummy mirror test

- **Next Step**
 - -0.2%/Gpls with 125W ave. with full size mirror
 - >90% availability challenge with operation software enhancement
 - 250W ave. with -0.2%/Gpls, >90% availability proof test in 2020 target
Key Performance Status and its target

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2016</th>
<th>2018 Current</th>
<th>2018 End</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-band power (Average Power)</td>
<td>87W (83W)</td>
<td>113W (111W)</td>
<td>125W (125W)</td>
<td>250W</td>
</tr>
<tr>
<td>Collector lifetime</td>
<td>No data</td>
<td>-10%/Bpl s *3</td>
<td>-0.2%/Bpl s</td>
<td>-0.2%/Bpl s</td>
</tr>
<tr>
<td>Availability</td>
<td>15%</td>
<td>44%</td>
<td>(53%)</td>
<td>> 80%</td>
</tr>
</tbody>
</table>

Proto #2

Pilot #1

*1, Collector lifetime estimation has been started from 2017
*2, Max availability in 4 week operation.
*3, Main issue was capping layer performance.
Acknowledgements

Thank you for co-operation:
Mitsubishi electric CO₂ laser amp. develop. team: Dr. Yoichi Tanino*, Dr. Junichi Nishimae, Dr. Shuichi Fujikawa and others
Dr. Akira Endo :HiLase Project (Prague) and Prof. Masakazu Washio and others in Waseda University
Dr. Kentaro Tomita, Prof. Kiichiro Uchino and others in Kyushu University
Dr. Jun Sunahara, Dr. Katsunori Nishihara, Prof. Hiroaki Nishimura, and others in Osaka University

Thank you for funding:
EUV source development funding is partially support by NEDO (New Energy and Industrial Technology Development Organization) in JAPAN

Thank you to my colleagues:
EUV development team of Gigaphoton: Hiroaki Nakarai, Tamotsu Abe, Takeshi Ohta, Krzysztof M Nowak, Yasufumi Kawauchi, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Tsuyoshi Yamada, Taku Yamazaki, Takashi Saitou and other engineers
THANK YOU