Present status of laser-produced plasma EUV light source

Akira Sumitani¹, Kouji Kakizaki¹, Hiroshi Komori¹, Tamotsu Abe¹, Yukio Watanabe¹, Takanobu Ishihara¹, Tsukasa Hori¹, Junichi Fujimoto², Hakaru Mizoguchi³

1-Komatsu / EUVA (Extreme Ultraviolet Lithography System Development Association)
2- Gigaphoton / EUVA, 3- Gigaphoton Inc.

International EUVL Symposium
October 19, 2009
Prague, Czech Republic
Summary

➤ Product roadmap
 ✓ Target specification and schedule of Gigaphoton LPP source product is updated.
 • 75W average power will be available in 2011/2Q.

➤ ETS (1st generation integrated setup LPP source)
 ✓ First performance data is reported.
 • Average power: 2.5W (@/F, calculation)
 • Brightness: 25W (@/F, calculation)
 • Duty cycle: 10%
EUV Light Source Roadmap

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>>400W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GL400E</td>
</tr>
<tr>
<td>>200W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GL200E</td>
</tr>
<tr>
<td>>100W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GL100E</td>
</tr>
<tr>
<td>100W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ETS</td>
</tr>
</tbody>
</table>

October 20, 2009 EUVL Symposium P3
EUV Light Source Major Specifications

<table>
<thead>
<tr>
<th>EUV model</th>
<th>ETS</th>
<th>GL100E proto</th>
<th>GL200E</th>
<th>GL400E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>W</td>
<td>100</td>
<td>>100</td>
<td>>200</td>
</tr>
<tr>
<td>Pulse energy</td>
<td>mJ</td>
<td>1</td>
<td>>1</td>
<td>>2</td>
</tr>
<tr>
<td>Max rep rate</td>
<td>kHz</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Max Duty Cycle</td>
<td>%</td>
<td>75</td>
<td>>75</td>
<td>>75</td>
</tr>
</tbody>
</table>

Sub systems

<table>
<thead>
<tr>
<th>Sub systems</th>
<th>ETS</th>
<th>GL100E proto</th>
<th>GL200E</th>
<th>GL400E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Material and Shape</td>
<td>Sn droplet</td>
<td>Sn droplet</td>
<td>Sn droplet</td>
<td>Sn droplet</td>
</tr>
<tr>
<td>Droplet Diameter</td>
<td>micro meter</td>
<td>60</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Debris Mitigation</td>
<td>Magnet and cleaning</td>
<td>Magnet and cleaning</td>
<td>Magnet and cleaning</td>
<td>Magnet and cleaning</td>
</tr>
<tr>
<td>Collector Mirror Lifetime</td>
<td>Bpl</td>
<td>11</td>
<td>>200</td>
<td>>1250</td>
</tr>
<tr>
<td>Tool Interface</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

October 20, 2009 EUVL Symposium P4
Average Power Improvement Chart (scheduled)

Climbing up the average power cliff very rapidly

present
Concept of Gigaphoton LPP Source

Requirement for EUV source for HVM
- High EUV power >115 W
- EUV Stability
- Collector mirror lifetime
- Low CoG / CoO

Original technologies
1. CO₂ laser and Sn LPP source
2. Magnetic field plasma guiding
3. High power pulsed CO₂ laser

![Diagram of EUV source](image)
ETS System Configuration

System layout

Laser System

- Oscillator
 - Wave length: 10.6μm
 - Rep. rate: 100kHz
 - Pulse width: 20 ns (FWHM)

- Pre-Amplifier
 - RF-excited CO2 laser

- Main Amplifier
 - RF-excited CO2 laser

Laser Power: 13 kW
Pulse Width: 20 ns
Repetition Rate: 100 kHz
Pulse energy stability: 2% (3s, 500 pulses)

EUV chamber

Laser beam profile

13 kW
100 W at I/F equivalent

October 20, 2009 EUVL Symposium P7
ETS EUV Chamber Configuration
Droplet Generator

Droplet for ETS
- Diameter: 60um
- Stability: ±13um
- Velocity: 60mss/s
- Frequency: 400kHz

Droplet experimental chamber

Graphs
- X-Position [um] vs. Time [min]
- Z-Position [um] vs. Time [min]

October 20, 2009 EUVL Symposium P9
Mitigation Experiment

- **Ion**
 - Faraday cup: 1000 pls (10 ms) @ 100 kHz

- **Mirror life**: Mo/Si
 - Sample mirror: surface measurement

- **Condition**
 - Magnetic field applied
 - Laser: 50 mJ, 100 kHz, 2.4% duty (25 ms on + 1 s off)
 - Droplet: φ 60 um
Ion Shielding by Magnetic Field – Faraday Cup signal

- Under application of Magnetic field, off-axis (related to B-field) ion signal is below the detection limit.

![Graph showing ion signal comparison with and without B-field](image)

- FC position: H52.5deg, V30deg
- CO2 Laser energy: 50mJ
- 100 pulse average
ETS Experiment

➢ 1st generation integrated LPP system

➢ Demonstration of 100W (av.75W) operation
 ✓ Prove system concept with real data with integrated system
 ● Pre-pulse target heating
 ● Mass limited target
 ● Magnetic mitigation
 ● Mirror cleaning

➢ Clarify the engineering issues of component and find solution
 ✓ CO2 laser
 ✓ EUV chamber (mirror, droplet gen., etc.)

➢ Feedback engineering data to GL100E
EUV Plasma Light

- CO₂ Laser power 5kW
- Duty 10%
 - Burst ON 20msec
 - Burst OFF 180msec
- w/ Droplet position control
- w/o Droplet timing control
- w/o Energy control
EUV Energy w/o pre-pulse

1msec average/point

- Average power (@I/F, calculation): 2.5W
- Brightness (@I/F, calculation): 25W
- Duty cycle: 10%
- Max. non stop operation time: 3 hr
- Experiment time: 10 hr
- Average CE: 1.5%

- w/ Droplet position control
- w/o Droplet timing control
- w/o Energy control

October 20, 2009 EUVL Symposium P14
EUV Energy w/o pre-pulse

Long term operation

✓ w/ Droplet position control
✓ w/o Droplet timing control
✓ w/o Energy control
EUV Energy w/o pre-pulse

- Burst mode stability

50-burst

4 msec moving average/point

Number of pulses [x2]

- w/ Droplet position control
- w/o Droplet timing control
- w/o Energy control
YAG laser is being prepared.
3% of CE with pre-pulse is expected.
Status Summary of ETS Experiment

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Type</th>
<th>Performance at Plasma</th>
<th>Integrated Performance</th>
<th>Performance Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigaphoton Komatsu EUVA</td>
<td>Sn LPP</td>
<td>Demonstrated operating time</td>
<td>Average EUV power in 2π at plasma (measured)</td>
<td>Demonstrate d operating time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 hours @ 10% duty cycle</td>
<td>7.5W @ 10% duty cycle</td>
<td>3 hours @ 10% duty cycle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>With droplets No integrated Source</td>
</tr>
</tbody>
</table>

Acknowledgments

This work was partly supported by the New Energy and Industrial Technology Development Organization -NEDO- Japan.

October 20, 2009 EUVL Symposium P18