Performance of Bandwidth Tuning Laser for Focus Drilling

Takahito Kumazaki, Satoshi Tanaka, Hiroshi Tanaka, Yoshinobu Watabe, Shinichi Matsumoto, Takashi Matsunaga, Junichi Fujimoto

Oct. 20, 2011
Gigaphoton Inc.
Contents

- Introduction
 - ArF Model & Specifications
 - Needs for focus drilling

- Approach for Focus Drilling by bandwidth tuning
 - Simulation results
 - Configuration for this function
 - Upgradability

- BW performance
 - Tuning range
 - Spectra shape
 - Tuning time
 - Measurement accuracy
 - Spectrum Stability

- Influence to other Key Performances
 - BP/BD/Pointing/Energy stability

- Conclusion
Contents

- Introduction
 - ArF Model & Specifications
 - Needs for focus drilling

- Approach for Focus Drilling by bandwidth tuning
 - Simulation results
 - Configuration for this function
 - Upgradability

- BW performance
 - Tuning range
 - Spectra shape
 - Tuning time
 - Measurement accuracy
 - Spectrum Stability

- Influence to other Key Performances
 - BP/BD/Pointing/Energy stability

- Conclusion
ArF Model & Specifications

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65 nm</td>
<td>GT40A</td>
<td>higher throughput</td>
<td>45</td>
<td>11.25</td>
<td>4000</td>
<td><0.5</td>
</tr>
<tr>
<td>50 nm</td>
<td>GT60A</td>
<td>higher throughput</td>
<td>60</td>
<td>10</td>
<td>6000</td>
<td><0.5</td>
</tr>
<tr>
<td>45 nm</td>
<td>GT61A</td>
<td>higher NA</td>
<td>60</td>
<td>10</td>
<td>6000</td>
<td>0.3</td>
</tr>
<tr>
<td>32 nm</td>
<td>GT62A-1S</td>
<td>Double Patterning</td>
<td>60</td>
<td>10</td>
<td>6000</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>GT62A-1N</td>
<td>higher throughput</td>
<td>90</td>
<td>15</td>
<td>6000</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>GT62A-1SxE</td>
<td>flexibility</td>
<td>60-90</td>
<td>10-15</td>
<td>6000</td>
<td>0.3</td>
</tr>
</tbody>
</table>

GRYCOS: chamber lifetime extension technology
MPL: technology for extension of LNM lifetime
TGM: technology for extension of gas lifetime
Needs for focus drilling

- Needs: Increasing Depth-of Focus (DoF)
 - To enhance the process window of contact hole or VIA printing

* Current narrow-band spectrum is also needed for immersion technology
Contents

- Introduction
 - ArF Model & Specifications
 - Needs for focus drilling

- Approach for Focus Drilling by bandwidth tuning
 - Simulation results
 - Configuration for this function
 - Upgradability

- BW performance
 - Tuning range
 - Spectra shape
 - Tuning time
 - Measurement accuracy
 - Spectrum Stability

- Influence to other Key Performances
 - BP/BD/Pointing/Energy stability

- Conclusion
Approach for Focus Drilling by laser bandwidth tuning

Laser spectra broadening

DOF enhancement

Chromatic aberrations

Focus shift
Simulation of DOF by bandwidth tuning

- **DOF can be expanded by tuning spectrum bandwidth**

![Graph showing normalized intensity and exposure latitude vs. relative wavelength and depth of focus for different bandwidths.]
Configuration for the function

- **Bandwidth tuning**
 - Newly developed LNM is implemented

- **Metrology and Control**
 - Existing hardware can be useful
 - No need to upgrade
Upgradability

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65 nm</td>
<td>GT40A</td>
<td>higher throughput</td>
<td>45</td>
<td>11.25</td>
<td>4000</td>
<td><0.5</td>
<td><0.5</td>
</tr>
<tr>
<td>50 nm</td>
<td>GT60A</td>
<td>higher throughput</td>
<td>60</td>
<td>10</td>
<td>6000</td>
<td><0.5</td>
<td><0.5</td>
</tr>
<tr>
<td>45 nm</td>
<td>GT61A</td>
<td>higher NA</td>
<td>60</td>
<td>10</td>
<td>6000</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>32 nm</td>
<td>GT62A-1S</td>
<td>Double Patterning</td>
<td>60</td>
<td>10</td>
<td>6000</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GT62A-1N</td>
<td>higher throughput</td>
<td>90</td>
<td>15</td>
<td>6000</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GT62A-1SxE</td>
<td>flexibility</td>
<td>60-90</td>
<td>10-15</td>
<td>6000</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

GRYCOS: chamber lifetime extension technology
MPL: technology for extension of LNM lifetime
TGM: technology for extension of gas lifetime

- Easy upgradable to GT61A/62A series
- All other function (MPL, GRYCOS, TGM) can be available
Contents

- Introduction
 - ArF Model & Specifications
 - Needs for focus drilling

- Approach for Focus Drilling by bandwidth tuning
 - Simulation results
 - Configuration for this function
 - Upgradability

- BW performance
 - Tuning range
 - Spectra shape
 - Tuning time
 - Measurement accuracy
 - Spectrum Stability

- Influence to other Key Performances
 - BP/BD/Pointing/Energy stability

- Conclusion
The definition of new metric CBW

- Convoluted bandwidth (CBW) has been introduced for Focus Drilling
 - Convolution of a measured laser spectrum and the aerial image of a contact hole
 - Good correlation to the lithographic CD over broad variation

Ref: Proc. SPIE Optical Microlithography XXIV 7973, 28
"Focus Drilling for Increased Process Latitude in High-NA Immersion Lithography"
Tuning performance of bandwidth

- Bandwidth tuning
 - Bandwidth can be tuned continuously
Spectra shape

- **E95: 0.3 pm**
- **CBW: 0.7 pm**
- **CBW: 1.0 pm**
- **CBW: 1.7 pm**

Measured external spectrometer

Performance were measured using 3 different LNM

Bandwidth tuning

- Symmetric at any bandwidth -> No focus shift
- High re-productivity -> Little fluctuation tool-to-tool
Relationship between CBW and E95

* Performance were measured using 3 different LNM

- Relationship between CBW and E95 are similar for ALL LNM
Accuracy of bandwidth measurement

![Graph of CBW setpoint vs. measured CBW by external spectrometer]

- High linearity can be achieved
- Bandwidth can be measured and controlled well with on-board measurement tool

* Performance were measured using 3 different LNM
Spectrum stability (short term)

- Bandwidth can be controlled with high accuracy at any BW set-point
 - Little CD fluctuation within chip

* Measured external spectrometer
Spectrum stability (middle term: Gas Life)

- Bandwidth can be controlled with high accuracy over gas-life
 - Little CD fluctuation lot-to-lot

* Measured external spectrometer
Bandwidth Tuning time

Low (E95:0.3pm) -> High (CBW:1.7pm)

High (CBW:1.7pm) -> Low (E95:0.3pm)

Bandwidth can be tuned within several seconds

- Low influence to Lithography throughput

* Tuning time were measured 5 times at each condition
Contents

- Introduction
 - ArF Model & Specifications
 - Needs for focus drilling

- Approach for Focus Drilling by bandwidth tuning
 - Simulation results
 - Configuration for this function
 - Upgradability

- BW performance
 - Tuning range
 - Spectra shape
 - Tuning time
 - Measurement accuracy
 - Spectrum Stability

- Influence to other Key Performances
 - BP/BD/Pointing/Energy stability

- Conclusion
Beam Profile stability

- High stability of Beam Profile size
 - Stable illumination uniformity will be expected at any bandwidth
High stability of Beam Divergence

- Stable illumination uniformity will be expected at any bandwidth
Pointing stability

- **High stability of Beam pointing**
 - Stable illumination uniformity will be expected at any bandwidth
Energy stability

- High Energy stability
 - No impact to CD variation
Contents

- Introduction
 - ArF Model & Specifications
 - Needs for focus drilling

- Approach for Focus Drilling by bandwidth tuning
 - Simulation results
 - Configuration for this function
 - Upgradability

- BW performance
 - Tuning range
 - Spectra shape
 - Tuning time
 - Measurement accuracy
 - Spectrum Stability

- Influence to other Key Performances
 - BP/BD/Pointing/Energy stability

- Conclusion
Conclusion

- Gigaphoton have developed the new flexible function for Focus Drilling

 ✓ Bandwidth performance
 - Wide tuning range
 - Accurately stabilized, Low fluctuation
 - Cell-to-cell, Lot-to-lot, Tool-to-tool
 - High-speed Tuning time

 ✓ Little impact to other laser key performance

 ✓ Easy-upgradable to GT61A/62A series
Acknowledgement

We thank to ASML for discussing and supporting this project.